Multicovering Bounds from Relative Covering Radii

نویسندگان

  • Iiro S. Honkala
  • Andrew Klapper
چکیده

The multicovering radii of a code are recently introduced natural generalizations of the covering radius measuring the smallest radius of balls around codewords that cover all m-tuples of vectors. In this paper we prove a new identity relating the multicovering radii of a code to a relativized notion of ordinary covering radius. This identity is used to prove new bounds on the multicovering radii of particular codes. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for the Multicovering Radii of Reed-Muller Codes with Applications to Stream Ciphers

The multicovering radii of a code are recent generalizations of the covering radius of a code. For positive m, the m-covering radius of C is the least radius t such that every m-tuple of vectors is contained in at least one ball of radius t centered at some codeword. In this paper upper bounds are found for the multicovering radii of first order Reed-Muller codes. These bounds generalize the we...

متن کامل

The multicovering radius problem for some types of discrete structures

The covering radius problem is a question in coding theory concerned with finding the minimum radius r such that, given a code that is a subset of an underlying metric space, balls of radius r over its code words cover the entire metric space. Klapper ([13]) introduced a code parameter, called the multicovering radius, which is a generalization of the covering radius. In this paper, we introduc...

متن کامل

The Multicovering Radii of Codes Preliminary Version

The covering radius of a code is the least r such that the set of balls of radius r around codewords covers the entire ambient space. We introduce a generalization of the notion of covering radius. The m-covering radius of a code is the least radius such that the set of balls of the radius covers all m-tuples of elements in the ambient space. We investigate basic properties of m-covering radii....

متن کامل

Improved lower bounds for multicovering codes

The m-covering radius of a code is a recent generalization of the covering radius of a code. It is the smallest t such that every m-tuple of vectors is contained in a ball of Hamming radius centered at some codeword. We derive new lower bounds for the size of the smallest code that has a given length and m-covering radius.

متن کامل

Theoretical Upper Bounds on the Covering Radii of Boolean Functions

We prove new upper bounds for the covering radii ρ(n) and ρB(n) of the first order Reed-Muller code R(1, n). Although these bounds be actually theoretical, they improve the classical Helleseth-Kløve-Mykkeltveit (H.K.M.) bound 2n−1 − 2n2−1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2002